Blog

How Does Google Do Backups?

Reading Time: < 1 minute

In this Fujifilm Summit video, Raymond Blum, Staff Site Reliability Engineer at Google, explains how Google handles its backups and the importance of diversity when it comes to storage. Watch it here:

Read More

How Do You Get Renewables to Power Data Centers?

Reading Time: < 1 minute

By diversifying your renewable energy mix, you can achieve energy efficiency gains even with data centers which typically carry large power loads.  In this Fujifilm video, Craig Lewis, Executive Director of Clean Coalition talks about how tape storage allows us to do more work with more data storage using a lot less energy.  Watch it here:

 

 

Read More

How to Store a Zettabyte

Reading Time: < 1 minute

According to Aaron Ogus, partner development manager for Microsoft Azure Storage, storing a zettabyte of storage will be financially feasible in 2020. Data growth will always exceed expectations, and tape has a more credible road map and one that is easier to get to with not as much investment. Learn more in this video blog:

Read More

Taking Advantage of LTO-7 “Type M”

Reading Time: 3 minutes

Rich Gadomski
Vice President of Marketing
FUJIFILM Recording Media U.S.A., Inc

Sometimes change can lead to confusion, or at least to a lot of questions. Take changes in the tax laws for example. I won’t get into details, but suffice it to say I feel sorry for tax preparers come 2019!

In the realm of tape storage, we too have had some changes to the traditional roll-out of next-generation LTO tape drives and media. But rather than focus on confusing change, let’s focus on the luxury of having options. That’s exactly what we have in the option offered with the introduction of LTO-8 drives that can use standard LTO-8, LTO-7, or… LTO-7 Type M tape cartridges.

For the first time in the history of LTO technology dating back to 2000, users can now write to the previous generation tape cartridge at a higher density than previously allowed. Specifically, LTO gen 8 drive users can choose the option to write 9.0 TB native at 300 MB per second on a new/unused LTO-7 tape that previously maxed out at 6.0 TB native on LTO-7 drives. Assuming 2.5:1 data compression, 22.5 TB can be stored on a LTO-7 Type M cartridge with transfer speeds up to 750 MB per second. That’s a lot of capacity… and really fast!

Beyond extra capacity, LTO-7 Type M is a good option economically speaking, since there is no price difference between standard LTO-7 media already in the market and LTO-7 Type M media. This means LTO-7 Type M is 33% less on a cost per TB basis than LTO-7 and 45% less than LTO-8 media at current internet reseller prices.

Taking advantage of the LTO-7 Type M option is easy. First, make sure your tape library is equipped with LTO-8 drives and is upgraded to initialize LTO-7 Type M media for 9.0 TB capacity. If necessary, contact your library vendor to confirm this detail or to enable it. For your library to distinguish standard LTO-7 from Type M, you need to use “M8” designated barcode labels as opposed to “L7” designated barcode labels. To verify, you will see the characters“M8” printed to the right of the volser number on the barcode label where you would normally see “L7”.

Finally, like a good drug commercial, there are a few disclaimers to be aware of, but in this case the side-effects don’t sound worse than the disease known as: exponential data growth coupled with shrinking budgets. So here we go:

  • LTO-7 Type M can’t be initialized in standalone LTO-8 drives, library system required. But once initialized by the library, the Type M tape can be used in a standalone LTO-8 drive (read/write)
  • Once initialized for 9.0 TB, the Type M cartridge will not be compatible with LTO-7 drives
  • Type M cartidges will not be read/write compatible with LTO-9 drives

It’s always nice to have the luxury of options especially if that means be able to handle a lot more data at a super attractive price!

Read More

The Impact of GDPR on Your Data Management Strategy

Reading Time: 2 minutes

By Floyd Christofferson,
SVP of Products at Strongbox Data

It is no illusion that every time you turn around it seems there is another report of a high-profile hack of sensitive personal data, impacting hundreds of millions of people all over the world. The recent Equifax hack released personal financial data of over 143 million consumers, but that was not an isolated incident. In 2016 and 2017 so far there have been at least 26 major hacks around the world that have released personal data of more than 700 million people. These include hacks of telecommunication companies, financial institutions, government agencies, universities, shopping sites, and much more.

The hacks are not a new problem. But in a global economy with often conflicting political and economic priorities at stake, there has been no comprehensive approach to ensuring people have the right to protect and delete if they want, all of their personal data.

The European Union’s new GDPR (General Data Protection Regulation) went into effect in May 2018. Although GDPR is designed to protect European citizens, the rules and penalties apply to any company from any country who does business in Europe. And the penalties are significant, with companies at risk of being fined up to 4% of their global annual gross revenues or €20 million (whichever is greater) for failing to comply with strict right-to-be-forgotten and privacy protections for customer data.

As a result, there is a growing panic among businesses as they try to figure out how to solve this problem in time, and how to do so with existing data management and storage resources that are not designed for this task. And the concern is not only in Europe. Companies in the US and around the world who have customers in Europe are also scrambling to ensure they are in full compliance by the deadline. But according to Gartner, by the end of 2018 over 50% of companies affected by the GDPR worldwide will not be in full compliance with its requirements.

In this paper we offer an overview of the key provisions of GDPR that impact storage and data management for both structured and unstructured data. In subsequent technical briefs, we will go into more detail about specific technical solutions to help ensure your data environment is in compliance, even with your existing storage and data infrastructure.

Read More

What Exactly is Barium Ferrite?

Reading Time: 3 minutes

By: Ken Kajikawa

The marketplace is full of examples of unique manufacturing ingredients that make products special. McDonald’s has its special sauce. Kentucky Fried Chicken has its secret recipe. Bush’s Beans has a talking dog that won’t disclose how they make their baked beans. Well, at Fujifilm, we too have our secret sauce, it’s called Barium Ferrite and we’re happy to share our story.

What makes Fujifilm Ultrium LTO-6 and LTO-7 different from past generations of Fujifilm LTO media? The answer is Barium Ferrite, or for you chemistry geeks out there BaFe. Okay, so you are probably asking what does this mean for me? The answer lies in Barium Ferrite magnetic particles. These particles enable higher data density and superior performance. Barium Ferrite allows for LTO-6 and LTO-7 media (and future generations) to have the following extraordinary benefits:

1)   Higher Capacity:A HIGHER SIGNAL-TO-NOISE RATIO ENABLES

USE OF SMALLER PARTICLES RESULTING IN HIGHER CAPACITY

Fujifilm successfully developed a type of BaFe particulate tape with a signal-to-noise ratio that is four decibels higher than that of a commercially available LTO-5 tape at a very high linear density and with a thermal stability sufficient for long-term archiving over at least 30 years. This high recording performance and thermal stability were achieved by using a tape with a smooth surface and highly oriented fine magnetic particles made possible by our Nanocubic coating technology.

Metal Particles (MP Tape) require a protective passivation coating to prevent oxidation.  The passivation layer also limits the reduction of particle size that can be achieved.  BaFe particles are oxides so a passivation layer isn’t needed.  Smaller particles with better stability can be achieved with BaFe.

2)   Longer Archival Life: BARIUM FERRITE IS A CHEMICALLY STABLE

MATERIAL WITH NO MAGNETIC PROPERTY LOSS

Data is growing at an exponential rate and will continue growing for the foreseeable future. You need to manage and store this data without worrying about whether or not it is secure and you will be able to retrieve it at some point in the future. Using media based on Barium Ferrite assures that your data is stored on the most technologically advanced high density media available today.

Fujifilm believes that advanced BaFe particulate tape shows promise for use in future generations of magnetic particulate tape. We expect tape storage systems using BaFe particle media to continue to provide sufficient storage capacity at a low TCO for many years to come. And after that, there will be a new metal particle already under development by Fujifilm called Strontium Ferrite (SrFe) to ensure continuing areal density gains and to meet the demands of future tape roadmaps. But SrFe is a subject for another blog!Read more

Read More

Don’t Be Blindsided By Invisible Storage Costs

Reading Time: < 1 minute

In this video, Brad Johns provides the real cost of ownership of your data storage over 10 years and explains why tape is the most affordable option for long-term data storage. Although many companies use a variety of different storage platforms, tape is the most practical and the most affordable for backup and archive.

For one petabyte of raw, non-compressible data, the cost savings versus high capacity disk is about 74% over the course of 10 years; the savings increase to 84% when compared to the cloud.  Brad Johns crunched the numbers and tape is undeniably the cheapest option for long-term storage.

Find out how you can start saving on your data storage costs. Access the free TCO calculator here.

Read More

Why is Microsoft Azure Choosing Tape?

Reading Time: < 1 minute

Listen to Marvin McNett, Principal Developer Manager from Microsoft as he explains the reasons tape is being used today in the Microsoft data center for its archival storage tier. View the video here:

Read More

What is Redundant Arrays of Independent Tape (RAIT)?

Reading Time: < 1 minute

According to the Information Storage Industry Consortium, the total data rate for tape is improving by 22.5% MB/sec per year. One concept that is driving this capacity increase in the tape industry is RAIT (Redundant Arrays of Independent Tape). RAIT is ideal for large files that need massive amounts of throughput such as in a disaster recovery scenario where you need the ability to move your whole data center electronically to another location.

In this video, Fred Moore of Horison Information Strategies explains how RAIT works.

Read More

It’s Just a Matter of Time, as Storage Demands Rise

Reading Time: 2 minutes

Rich Gadomski
Vice President of Marketing
FUJIFILM Recording Media U.S.A., Inc

I recently returned from a speaking opportunity at the PRISM Conference held in Miami on May 8thand 9th where I spoke on the Role of Tape in Today’s Modern Offsite Storage Center. In addition to holding and protecting valuable data tape cartridges for archive, backup, and disaster recovery applications, offsite vaults also play a crucial role in providing an “air gap” against cyber criminals and their alarming malware and ransomware variants. Because of tape’s powerful value proposition, it provides this functionality particularly well. It’s easily portable, has the lowest total cost of ownership, is the most reliable storage medium today, and has long archival life and high capacity.

The audience, which included many regional data vault service providers from the U.S. and abroad, didn’t have to take my word on the value prop of tape. I backed it up with studies from leading IT research companies and articles from reliable publications such as the Wall Street Journal. I sprinkled in some news about tape usage from folks like Microsoft Azure. Finally, I detailed the bright future tape has based on its ability to continue to increase in areal density which will ensure increasing capacity and cost competitiveness without sacrificing performance, thanks in part to Fujifilm’s Barium Ferrite and Strontium Ferrite magnetic particle technology.

At the end of my presentation, during the Q&A, I got the following response and question: “Tape sounds great, how come we don’t see more tape volume flowing into our vaults?” One reason for this would be the increasing data densities of tape which would reduce unit volumes. Understandably this is not great for the vault service providers, but this is actually a great benefit for end users; they can store more data on fewer units. Another factor to consider is the ever-increasing popularity of cloud storage over say, the past five years. We have seen a move from on-premises, do-it-yourself storage to outsourced cloud services. This is especially true among startups and SMBs and specific verticals where the cloud can provide unique functionality such as compute and file sharing.

But as the world turns ever so slowly, so do market conditions. Now that data storage pros have gotten comfortable with what the cloud can do, they are also starting to understand some of the downsides such as high TCO associated with egress fees and bandwidth. Security concerns might be mounting too in light of escalating cybersecurity breaches.

So at some point, tape will make sense again for many of the folks who tried cloud, considering TCO, budget constraints and the need for air gap. It’s just a matter of time, as long as demand for storage keeps rising based on relentless data growth.  And so long as the hackers don’t quit on the highly profitable multi-trillion dollar business of cybercrime.

Read More

LET’S DISCUSS YOUR NEEDS

We can help you reduce cost, decrease vendor lock-in, and increase productivity of storage staff while ensuring accessibility and longevity of data.

Contact Us >