What Exactly is Barium Ferrite?

3 minutes
3 minutes
Reading Time: 3 minutes

By: Ken Kajikawa

The marketplace is full of examples of unique manufacturing ingredients that make products special. McDonald’s has its special sauce. Kentucky Fried Chicken has its secret recipe. Bush’s Beans has a talking dog that won’t disclose how they make their baked beans. Well, at Fujifilm, we too have our secret sauce, it’s called Barium Ferrite and we’re happy to share our story.

What makes Fujifilm Ultrium LTO-6 and LTO-7 different from past generations of Fujifilm LTO media? The answer is Barium Ferrite, or for you chemistry geeks out there BaFe. Okay, so you are probably asking what does this mean for me? The answer lies in Barium Ferrite magnetic particles. These particles enable higher data density and superior performance. Barium Ferrite allows for LTO-6 and LTO-7 media (and future generations) to have the following extraordinary benefits:

1)   Higher Capacity:A HIGHER SIGNAL-TO-NOISE RATIO ENABLES

USE OF SMALLER PARTICLES RESULTING IN HIGHER CAPACITY

Fujifilm successfully developed a type of BaFe particulate tape with a signal-to-noise ratio that is four decibels higher than that of a commercially available LTO-5 tape at a very high linear density and with a thermal stability sufficient for long-term archiving over at least 30 years. This high recording performance and thermal stability were achieved by using a tape with a smooth surface and highly oriented fine magnetic particles made possible by our Nanocubic coating technology.

Metal Particles (MP Tape) require a protective passivation coating to prevent oxidation.  The passivation layer also limits the reduction of particle size that can be achieved.  BaFe particles are oxides so a passivation layer isn’t needed.  Smaller particles with better stability can be achieved with BaFe.

2)   Longer Archival Life: BARIUM FERRITE IS A CHEMICALLY STABLE

MATERIAL WITH NO MAGNETIC PROPERTY LOSS

Data is growing at an exponential rate and will continue growing for the foreseeable future. You need to manage and store this data without worrying about whether or not it is secure and you will be able to retrieve it at some point in the future. Using media based on Barium Ferrite assures that your data is stored on the most technologically advanced high density media available today.

Fujifilm believes that advanced BaFe particulate tape shows promise for use in future generations of magnetic particulate tape. We expect tape storage systems using BaFe particle media to continue to provide sufficient storage capacity at a low TCO for many years to come. And after that, there will be a new metal particle already under development by Fujifilm called Strontium Ferrite (SrFe) to ensure continuing areal density gains and to meet the demands of future tape roadmaps. But SrFe is a subject for another blog!

Meredith Bagnulo

Active Archive Alliance